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Abstract

Purpose — This research investigated the optimal structure of a discrete-time Markov deterioration
system monitored by muitiple non-independent monitors. The purpose is to obtain a sufficient
condition with which the optimal policy is given by a control limit policy.

Design/methodology/approach — The model of this research is formulated as a partially

observable Markov decision process. The problem is to obtain an optimal policy which can minimize
the expected total discounted cost over an infinite horizon.

Findings — The research found that the expected optimal cost function over an infinite horizon has a
property of control limit policy given the conditions that a transition probability having a property of
totally positive of order 2 and a conditional probability of the monitors having a property of weak
multivariate monotone likelihood ratio. Furthermore, we showed that the optimal policy has only four
action regions at most.

Practical implications — If the optimum policy can be limited to a control limit policy, the
tremendous amount of calculation time required to find the optimum procedure can be reduced. This
enables the best decision to be identified in a much shorter period of time.

Originality/value — A deterioration system monitored incompletely by one monitor has been
studied in the previous research. This research considered the case of a multiple number monitors
whose observations were not independent.

Keywords Condition monitoring, Optimization techniques, Failure (mechanical),
Reliability management

Paper type Research paper

1. Introduction

Breakdowns in large, complex systems can seriously affect society. Preventive
maintenance plays an important role in avoiding such breakdowns. Many kinds of
maintenance problems of various systems have been studied using theories of
reliability and maintainability. Vaidyanathan et al. (2002), for example, investigated a
continuous time queuing model for an inspection-based preventive maintenance
problem. Derman (1963) studied an optimal replacement problem for discrete-time
Markov deterioration systems in which the state of the system is completely identified
at any given time. Rosenfield (1976) and White (1978) discussed optimal inspection and
replacement problems under the assumption that the system’s state can be observed
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Engineering only through costly inspection. Ohnishi et al (1986) explored a system monitored
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oD, 228.238 incompletely by one monitoring mechanism. However, the reliability of a system using
© Emerald Group Publishing Limited ]y one monitor is degraded by two types of contradictory failures, “false alarms” and
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o osnsssosiostonesss  “failure to alarm”. Taking this into account, we investigated a system monitored by
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several monitors whose observations were not independent and determined under Markov decision
what conditions there exists an optimal control limit policy. processes

2. Model

2.1 Description

In our system, the internal true state cannot be observed directly. Let X denote the true

state, and its value comes from a finite set {1,2, ...,#n} in which the numbers are 229
ordered to reflect the degree of system deterioration. That is, state 1 denotes the best
state, 1.e. the system is like new, and state # denotes the most deteriorated state. The
state deteriorates based on a stationary discrete-time Markov chain having a known
transition law. Let P be the transition probability matrix, in which element p;; denotes
the one-step transition probability from state 7 to state j. At each time period, the state
is monitored incompletely by monitors that give information related to the true state of
the system. We assume there are L(= 1) monitors. The outcomes of the L monitors are
givenas M =MD, ... M® ... MD) where M® denotes the outcome of the kth

monitor and comes from a finite set {1,2, ..., m;}. Let
Yiq,...ny 7 YU6,..0) T Yy, ..mp)
I'=1| Ya.n 7 Yie,...00 7 Yim,.om)
Y@,y T Ya6y,.6) T Vaom,..my)

be the conditional probability matrix that describes the relationships between the
system’s true states and the monitors’ outcomes.

Yior,.oqp =Pr(M P =6,, ... . M® =9, ... MY =g|X =)

» &«

Three actions, “keep”, “inspect”, and “replace”, are considered. “Keep” means an action
that continues system operation with incomplete monitoring, and the operating cost
per period in state 7 is given by C;. “Inspect” means an action to operate the system with
inspection, and this action reveals the exact state of the system with certainty.
Inspection cost /(> 0) is assumed to be constant. Similarly, “replace” means an action
to replace the system with a new one, and replacement cost R(> 0) is assumed to be
constant. At any given time period, only one of these three actions can be selected as
the optimal one.

2.2 Assumptions
Al. Transition probability matrix P has a property of totally positive of order 2
(TP,, Karlin, 1968), denoted by P € TP; :

by Dy

=0 fori<i, j<j. 1
bij  piyy 7= b
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A2 Observational probability matrix I' has a property of weak multivariate
monotone likelihood ratio (weak MLR) (Whitt, 1982), denoted by I' € weak MLR:
Yie  Yie'

=0 fori<j, 0=46, 2
Yo Yo J 2)

where the vector of monitor information has a partial order: 8= @', for 8=
(61, ...,0)and @ = (6}, ...,0,)if 6, = 0, foreach k€ {1, ...,L}.

A3 C;is a nondecreasing function of state 7.

A4. I(> 0)is constant.

Ab.  R(> 0) is constant.
Al means that, as the system deteriorates, it is more likely to make a transition to a
higher state. A2. implies that higher states of the system give rise to higher outcome
levels of the monitoring probabilistically. A3. means that, as the system deteriorates, it
becomes more costly to operate. A4. and A5. mean that the inspection and replacement
costs of the system are constant.

3. Optimal keep, inspect, and replace problem
At the beginning of any time period, “keep”, “inspect”, or “replace”, is selected as an
action. An optimal policy is the sequence of actions that minimizes the total cost
incurred in both current and future time periods. Since the state information obtained
from monitors is incomplete, the decision maker needs to determine the most suitable
action by inferring the system’s exact state from the current monitoring information
and the system’s history. This problem is formulated as partially observable Markov
decision processes.

The problem is how to minimize the expected total discounted cost over an infinite
horizon. Let I = (ry, m, ..., 7,) be the prior state probability vector of X, where

7
m; =Pr(X =1), Zm=1, and 0 =@ <1 for any ¢
=1

The transition between the states is specified below.
« When “keep” is selected, IT = T(I1, §) with probability P(|II), where

P(OIID) = Pr(M = 6T = > > mip%e,

j=1 i=1
n
E miDiYie
=1
n n

Z Z D YVie

=1 =1

T;(1,6) = Pr(X =jIM = 6,II), =

T(H) 0) = (Tl(IL 0)) TZ(Ha 0)7 (R Tn(Ha 0))
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Note that the updated probability vector, T(II, ), is calculated using Bayes’ Markov decision

formula. _ o - processes
+ When “inspect” is selected, II = ¢ with probability
n
Z miDij
- . 231

since the true state is known, and state probability ¢ is given as
=(0,...,0,1,0,...,0),

where the jth element 1s 1.
+ When “replace” is selected, IT = e! with probability 1, where

el =(1,0,...,0,...,0).

4. Properties of optimal total cost function

4.1 Optimal expected total cost function

Let V (IT) denote the optimal expected total cost function over an infinite horizon with
initial state IL.

Z mCi + ,32 ZP(()lH)V(T(H ) (keep)
=1 6=l 6,= 1
V() = min Z mCi+ 1 + [32 Z mibs V(&) (nspecty &
=1 i=1
R + BV(EeH (replace)

This is a recursive function that can be calculated based on initial state II, and
B0 < B < 1) is the discount factor. The three terms on the right correspond to the
total expected costs for the current and future periods when the actions “keep”,
“inspect”, and “replace”, are selected at the beginning.

Furthermore, the action that minimizes the right side of equation (3) is the optimal
action, and it must be selected for state Il. Hence, an optimal policy is obtained by
selecting the action that minimizes the optimal expected total cost for each IL

For notational convenience, we define three transformations.

KV 2Y mC+BY - POIV(T(L, 0) 4)
i=1 6=1 6,=1
van & Z mCi + 1+ ﬁz Z mips V(€) (5)
7=1 i=1
RV(II) £ R+ BV(eh), (6)

where KV (I), IV(II), and RV(IT) correspond to “keep”, “inspect”, and “replace”. We
can now write equation (3) as

VD) = min{KV{I),IV{ID),RVII)}. )
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JQME 4.2 Control limit policy
11.3 For prlor state probability vectors M= (#},mj,...,m)) and %=
’ (72, w3, ..., ), if V(II') =< V(I?) holds for It <4 II%, we say optimal cost
function V(H) exhibits a control limit pohcy (Figure 1). Here, partlal order < rfor the
two vectors is defined as: ITI* <7 IT? if

)

232 Ti2T o frallij(l=i<j<n), ®)
T

and we say that vector IT has a property of TPs.

An example of a non-control limit policy is shown in Figure 2. This policy implies
that the optimal expected total cost over an infinite horizon with initial state II is a
monotonically nondecreasing function of IT with respect to the partial order “TPy”.
That is, the more deteriorated the initial state of the system in a probabilistic sense of
TP, order, the larger the cost incurred in the future.

vt

V(I
18]

Figure 1.
Control limit policy

V(I

v(1h

V(1)

Figure 2.
Noncontrol limit policy
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4.3 Lemmas o Markov decision
Let 0_, denote the outcome @ = (61, ..., 6, ..., 6;) in which all elements except 6, processes
are fixed, and I'q_, denotes the corresponding conditional probability matrix.

Lemma 4.1. For II! < T2,

mei =Y © 233
=1 =1

holds if g; is a nondecreasing function of z.

Lemma 4.2. It Aisa (kg X k) TP, matrix and Bis a (k X kg) TP, matrix, ABis a
(ka X kp) TPy matrix.

For proof, see Karlin (1968).

Lemma 4.3.  If transition probability matrix P € TPs,

P <; %P for II' <7 M2, (10)

Lemma 4.4. For arbitrary 2 € (1, ... L),

I' € weak MLR = I'g_, € TP. (11)

Proof. 1t is easy to prove this from the definitions of TP, and weak MLR. |
Lemma 4.5. If P € TP;and I'g_, € TPy,

P(O_;|I1Y) <7 P(6_,]T1%) for W' <7 ITZ. 12)

Proof. This is obvious from Lemmas 4.2 and 4.4 and the fact that

P(6_,|]IT) = I1PTy_,. O

Lemma 4.6. For any fixed II,
T\, 0_) <7 T(AL 6_,) for 0_, <6, (13)

Proof. Given A2, T" € weak MLR, so

T;(I0L, 6-p)  T;11,0,) (IIP)/(ITP);, Yoo, Ve, 0 »
= =
T3, 0-p) T3(L, 02|  (PD) (IIPT)g | %o e, (14
holds from Lemma 4.4 for every j <;’,and 0_, < 0'_,,. O
Lemma 4.7. For any fixed @ = (6, ..., 0), we have
T, 0) <r T(M%,6) for I <7 IT2. (15)
Proof. Given AL, P € TPy, so
T,a1',6) T;1% 6) - ar'P); (II*P),
_ YieYie >0 (16)
T, 6) T(I%,6)| (IILPT),(II2PD), | (I'P); (II?P);| ~
holds from Lemma 4.3 for every i < 7, and I1' <7 IT2. a
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Lemma 4.8 If V (IT) is a concave function of I, then P@|IN)V (U1, 6)) is also a
concave function for any fixed 6.
Proof. For a proof, see Ohnishi et al. (1986). O

4.4 Sufficient condition
Here we examine the properties of optimal expected total cost function V (IT) under the
assumptions given in Section 2.2.

Corresponding to equation (7), we consider the functions VTN =0,1,2,...)
defined inductively as

VO 2 o, a7

V) 2 min{KVY DA, v @-0an, RV Y Dan;. (18)

V(1) is interpreted as the optimal expected cost over N periods. From the standard
argument of contraction mapping theory, V ™M) must converge to V (IT) as N tends to
infinity. Let F denote the class of all concave functions that have a property of control
limit policy. Given AI-A6, we have the following theorems.
Theorem 4.1. If VW-D(I) € F, then KV® V() € F.
Proof.
(1) Control limit policy. For

Ev@Dan =Y mC; + ﬁij - Z POV ¥~D(TAL, 0),  (19)
i=1

6,=1 0,=1
we obtain
SoalCi=Y " #C for I <7 % (20)
=1 =1

based on A3 and Lemma 4.1. Since V@~ Y(II) has a property of control limit
policy, and T(I', §) <7 T(I12, ) holds by Lemma 4.7, we obtain

VDALl 6) = VO-O(TIZ, 0) for M <7 112, (21)
Furthermore, we have
VDAL, 0-p) = VE(TAL 6.) 22)
from Lemma 4.6 and
P(O_IT1Y) <7 P(6_;I1%) for T' <7 TI 23

from Lemma 4.5. Thus, we obtain

iP(o_klnl)VW‘”(T(Hl, 0-p) = Y P(O_IIH)V W I(TAL, 0-p)),

01 6,=1

(24
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where VA Y(TUI?, 9_,)) is a nondecreasing function of 6, for II'. Since Markov decision
equation (24) holds for any 2 € (1, ...,L), we obtain processes

Xl: . XL: P(OIHl)V(N‘D(T(Hl, 0))

=1 6.=1
m my, 235
=Y > POy Erar, ey). (25)
6=1 6,=1

Given equations (21) and (25), we have

m my

> N peihv O (rart, 6)
6=1 6.=1
(26)

< Zl .. Z] P(0|H2)V(N_1)(T(H2, 0))

6=1 6-1
From equations (20) and (26), we derive
Kv&-Darhy = Kv®Dar?) for o' <7 2. @7
That is, KV Y(II) has a property of control limit policy.
(2) Concave. For notational convenience, we rewrite equation (19) as
KV OO = IIC + B POV ¥~D(T (L, 6)). 28)
Since V&-D(I) € F, o

> POV ¥ D1, 6))
[}

is a concave function of Il from Lemma 4.8 and the Appendix. As IIC is a
linear function of I, KV %~ (1), the combination of TIC and

> POV A DT, 9))
]
is a concave function of II.

Theorem 4.2. H V™ -DI) € F,then IVY-I(II) € F.
Proof. For

. n n
Iv(N—l)(H) — Z ’”ici iy g BZ Z W Q.V(N—l)(ej), (29)

=1 =1 i=1
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from A3, A4, and Lemma 4.1,

n n
S @CGHI=Y wC+I for M <7 112 (30)
=1 j

=1

From Lemma 4.3, we have

n'P <, 2P for ! < M2 @31
Since & < ¢ fori < j, we obtain a nondecrease of V&Y forj € {1, ...,n}. Then
n n n 7n
BY S wlp Ve = 3" wdp VD@ for ' < TP (32)
j=1 i=1 j=1 i=1
Thus, we can derive
webar) = y&har) for Mt <r 112 (33)

from equations 830) and (32).
Since 7V® () is a linear function of TI, IV®~ (I1) is a concave function. [
Theorem 4.3. If V&-DI) € F, then RV(N_D(III\; % F.

(1))

Proof. Since R+ BV ¥ D(el) is constant, RV is a special concave

function that has a property of control limit policy for a general N. 0
Theorem 4.4. V™{I) is a concave function that has a property of control limit
policy.

Proof. We use an inductive method to prove Theorem 4.4. The proof proceeds in
three steps:

(1) assume that VDIl = VE-D(I12) holds for IT* <7 115

(2) N =0, VO(I) = 0is a special case of concave functions that have a property
of control limit policy; and

(3) N periods, the total expected cost function for N periods is
VI = min{KV Y Dan, 1v ¥-Dam, RV V. (34)

From Theorems 4.1, 4.2 and 4.3 we have V™ (IT) € F. This guarantees V(II) € F
since V™(II) converges to V (II) as N tends to infinity. ]

4.5 Structural properties and discussion

Theorem 4.5. There exists an optimal policy that has four action regions at most.
That is, the optimal policy is determined by IT*, TI? and TI3(e! <7 II* <7 II? <p
113 <7 "), such that the system keeps operating for [e!, IT*] U [I12,T13], inspects for
[I1%, IT2), and replaces for [II 3 e,

The optimal policy obtained in the above theorem is similar to the one initially
introduced by Ross (1971). The optimal policy with four regions ({keep, inspect, keep,
replace}) may be described graphically as shown in Figure 3. Since an optimal policy
which is a sequence of optimal actions depends on the given costs, sometimes fewer
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Figure 3.
It Iz 1 _ Four regions (keep,
> 11 inspect, keep, replace)

Keep Inspect él@iwpé Replace

than four regions can characterize the optimal policy under different cost functions. If
the optimum policy is given by a control limit policy, we need only to determine at
most three thresholds on which the optimal action changes. Subsequently we do not
need to consider the optimal actions for each II, so the calculation time to find an
optimum procedure is reduced.

5. Conclusion

We investigated a deterioration system monitored by multiple, nonindependent
monitors and found that the expected optimal cost function over an infinite horizon has
a property of control limit policy given certain assumptions. Furthermore, the optimal
policy has only four action regions at most, so the tremendous amount of calculation
time required to find the optimum procedure can be reduced. This enables the best
decision to be identified in a much shorter period of time.
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Appendix
* If g(II, 6) is a concave function of II for each 6 € ©, ® = {6%, ..., 0"}, then

> #(1,6)

0c®

is also a concave function of IT.

Proof. For I = AII! 4 (1 — VT2, (0 =< A = 1), since (11, 6} is a concave function of I for
each 0 € @, we have

gL, 8" = Ag(IT}, 01) + (1 — Neg(IT%, 8", (35)
g(I1,0") = Ag(IT', 0“) + (1 — Veg(T?, 0°), 36)
where 6, ..., 0% € ©. Taking a summation, we obtain
S L6 = 2> 21,0+ (1 - 1)) I, 0y 37
6O €O 00
that is,
> &1, 0
6€0
is a concave function of II. O
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